Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent.
نویسندگان
چکیده
Proinflammatory cytokines inhibit growth plate development. However, their underlying mechanisms of action are unclear. These effects may be mediated by ceramide, a sphingosine-based lipid second messenger, which is elevated in a number of chronic inflammatory diseases. To test this hypothesis, we determined the effects of C2-ceramide, a cell permeable ceramide analogue, on the growth of the ATDC5 chondrogenic cell line and on cultured fetal mice metatarsals. In ATDC5 cells, C2-ceramide significantly induced apoptosis at both 40 (82%; P < 0.05) and 25 microM (53%; P < 0.05). At 40 microM, C2-ceramide significantly reduced proliferation ([3H]-thymidine uptake/mg protein) (62%; P < 0.05). C2-ceramide did not markedly alter the differentiation state of the cells as judged by the expression of markers of chondrogenesis and differentiation (sox 9, collagen II and collagen X). The IGF-I signalling pathway is the major autocrine/paracrine regulator of bone growth. Both in the presence and absence of IGF-I, C2-ceramide (25 microM) induced an equivalent reduction in proliferation (60%; P < 0.001). Similarly, C2-ceramide (40 microM) induced a 31% reduction in fetal metatarsal growth both in the presence and absence of IGF-I (both P < 0.001). Furthermore, C2-ceramide reduced ADCT5 proliferation in the presence of AG1024, an IGF-I and insulin receptor blocker. Therefore, C2-ceramide-dependent inhibition appears to be independent of IGF-mediated stimulation of bone growth. Indeed, biochemical studies demonstrated that C2-ceramide (25 microM) pretreatment did not alter IGF-I-stimulated phosphorylation of insulin receptor substrate-1, Akt or P44/42 MAP kinase. In conclusion, C2-ceramide inhibits proliferation and induces apoptosis in growth plate chondrocytes through an IGF-I independent mechanism.
منابع مشابه
Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth.
The possibility that growth hormone (GH) has effects on long bone growth independent of insulin-like growth factor-I (IGF-I) has long been debated. If this is true, then long bone growth should be more profoundly affected by the absence of GH (since both GH and GH-stimulated IGF-I effects are absent) than by the absence of IGF-I alone (since GH is still present and actually elevated). To test t...
متن کاملNF-κB p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of Growth Hormone on chondrogenesis and on the expression of Insulin-like Growth Factor-1 and Bone Morphogenetic Protein-2
Growth Hormone (GH) stimulates growth plate chondrogenesis and longitudinal bone growth, with its stimulatory effects being primarily mediated by Insulin-like Growth Factor-1 (IGF-1), both systemically and locally in the growth plate. It has been shown that the transcription factor Stat5b mediates the GHpromoting effect on IGF-1 expression and on chondrogenesis: yet, it is not known whether oth...
متن کاملAntiproliferative effects of insulin-like growth factor-binding protein-3 in mesenchymal chondrogenic cell line RCJ3.1C5.18. relationship to differentiation stage.
Chondrogenesis results from a complex equilibrium between chondrocyte proliferation and differentiation. Insulin-like growth factors (IGFs) have a crucial role in chondrogenesis, but their mechanisms of action are not well defined. IGF-binding protein-3 (IGFBP-3) is the major carrier for circulating IGFs in postnatal life, and has been shown to have IGF-independent effects on proliferation of s...
متن کاملThyroid Hormone-Mediated Growth and Differentiation of Growth Plate Chondrocytes Involves IGF-1 Modulation of β-Catenin Signaling
Thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through modulation of the Wnt/beta-catenin signaling pathway. Insulin-like growth factor 1 (IGF-1) has been described as a stabilizer of beta-catenin, and thyroid hormone is a known stimulator of IGF-1 receptor expression. The purpose of this study was to test the hypothesis that IGF-1 signaling is involved ...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of endocrinology
دوره 191 2 شماره
صفحات -
تاریخ انتشار 2006